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is SIGNIFICANCE AND EXPLANATION

One of the central problems in the mathematical theory of turbulence is

that of breakdown of smooth (indefinitely differentiable) solutions to the

equations of motion. In 1934 J. Leray advanced the idea that turbulence may

be related to the spontaneous appearance of singularities in solutions of

the 3-D incompressible Navier-Stokes equations. The problem is still open.

c_-We -show-in this report that breakdown of smooth solutions to the 3-D

incompressible slightly viscous (i.e. corresponding to high Reynolds numbers,

or "highly turbulent&) Navier-Stokes equations cannot occur without breakdown

in the corresponding solution of the incompressible Euler (ideal fluid)
equation. -We prove then that solutions of distorted Euler equations, which

are equations closely related to the Euler equations for short term intervals,

do breakdown. .- J) /-A ,1. ..
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NOTE ON LOSS OF REGJLARITY FOR SOLUTIONS OF THE 3-D

INCOMPRESSIBLE RULER AND RELATED EQUATIONS

Petre Constantin*

Introduction

The purpose of this paper is twofold: first to discuss the relationship between the

breakdown of smooth solutions to incompressible three-dimensional Ruler and Navier-Stokes

equations; and secondly to present blow-up results for distorted Euler equations.

Both the Navier-Stokes equations and the Euler equations possess local (in time)

smooth solutions. Moreover, as the viscosity vanishes the solutions to the Navier-Stokes

equations converge uniformly on a short time interval to the solution of the Euler

equation ([5],(7]). Adapting the method of Kato ((5]) and using a very simple ODE lemma

we prove in Section I that as long as the solution to the Euler equation is smooth the

solutions to slightly viscous Navier-Stokes equations with the same initial data are

smooth.

Sections 2 and 3 are devoted to blow-up results for distorted Ruler equations.

Differentiating the Ruler equations one obtains a quadratic equation for the Jacobian

matrix of the velocity vector:

_U + (u°V)U + U
2 

- Pt

lau a2

where u is the velocity vector, U - (--)i,j and P = (ax,;x-) with p the pressure.
xj 

i
One can use the incompressibility condition TrU = 0 to express P in terms of U.

Passing to Lagrangian coordinates, the differentiated Ruler equations become

(0.1) U + U2 + R(t)(TrU2 ) = 0

0 at

Department of Mathematics, University of Chicago, Chicago, IL 60637.
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where R(t) is a matrix of singular integral operators with time varying kernels. What

we call the distorted Euler equations are obtained from the above form of the genuine

Euler equations by replacing R(t) by R(0)i

(0.2) _U + U2 + R(O)(TrU2 ) . 0at

Although these equations are good short time approximations of the Euler vquations,

the blow-up arguments have no direct bearing on the Euler equations.

In Section 2 we discuss the periodic case and we show, by a localizati- Argument

reminiscent of the one in (23, that a large class of initial data lead tc %kdown of the

solution of (0.2). The conditions on the initial data do not involve any Mess

assumption but exclude Jacobians. Another drawback in the periodic case is e fact that

incompressibility, TrU - 0, is not preserved. This fact is due to the non nishing of

the mean of TrU 2 but it is not the major reason for the blow-up. (One can m dify

slightly the equations in order to preserve the constraint TrU - 0 and still prove

breakdown.) Moreover, in the whole space case the equations (0.2) do preserve

incompressibility. Section 3 treats solutions of the distorted Euler equations in the

whole space. C. Foias found ([41) that if the initial data for (0.2) have the form

(0.3) UO(x) = Bo(IxI)(I - nw(x))

where n is the dimension and w(x) = ) i,j 1,...,n, then this form is retained

by the solution U(t,x) of (0.2) and leads to a simple equation for the scalar quantity

0. We generalize slightly his result by allowing U0 to possess an antisymmetric part,

corresponding to the vorticity. We obtain a system of integro-differential equations for

two scalar quantities 8(t,r) (corresponding to the size of the deformation tensor) and

y(t,r) corresponding to the modulus of the vorticity. For y = 0 we recover the Foias

equation. The success of the reduction in the number of variables and unknowns is due to

a covariance property of equation (0.2) with respect to an action of 0(n). We prove

breakdown for solutions starting from initial data of the special form

SU ) = (IxI)(I - 31r(x)) + -yO(Ixt) x !

-2-
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If one takes the antisymmetric part of the three-dimensional distorted Ruler

equations and if one identifies 3 x 3 antisymuetric matrices J with the vectors given

by J - w x one obtains the equation

(0.4) ,- U
at

which is the analogue of the vorticity equation for incompressible Euler fllws.

In (3] the simple one-dimensional model equation for the three-dimensional vorticity

equation

(0.5) H (H - Hilbert transform)
at

was suggested. The breakdown of solutions to (0.2) is very similar to that of solutions

to (0.5): The quantity corresponding to the deformation tensor (the simmetric part of

U in the case of (0.2). Hw in the case of (0.5)) becomes infinite in regions when the

quantity corresponding to the vorticity (denoted w in both cases) is zero.

It is a pleasure to thank A. MaJda for suggesting the result of Section 1 and for

stimulating discussions. I had many interesting conversations with C. Foias and S.

Klainerman. It is an equal pleasure to thank them both.

.i
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1. A comparison result

Let us consider a solution v of the incompressible Euler equations

av

+ (v.V)v - Vp + f

(1.1) dv v -0

I v(O,-) -v

in either R3 or T3  (the three-dimensional torus). In this section we prove that as

long as v(t,*) is smooth, the solutions to slightly viscous incompressible wavier-Stokes

equations having v0  as initial data are smooth.

We use the notation H" for the Sobolev spaces HI - (P3 ) (resp. do - EP(T3))

and (.,.) -I'lm for the corresponding scalar products and norms.

Theorem 1.1

Let v - v(t,x) be a solution of (1.1) for 0 < t 4 T, satisfying

(1.2) IVoI1.+ 2 < " for some m 3

T
(1.3) f Ivxvl dt < .

0 L

T
Then there exists V0 - v0 (TIV01m+2; f IV x vI  dt) such that, for every 0 < v v00 L

the solution to the Navier-Stokes equation

-t + (u-V)u - vtiu + Vq + f

(1.4) div u 0

u(O,.) -v

is smooth on [0,T]. More precisely

(1.5) sup Iu(t) - v(t)I -C vYm
te[O,T]

T

for some -fm depending on T, Iv011 2 , f 'V x vI  dt
0 L'

Let us emphasize here that T is not assumed to be small. Instead it is assumed

that v(t) belongs to H"+ 2  for t c [0,T]. Indeed, assumption (1.3) was proven by

-4-
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J. T. Beale, T. Kato and A. Majda ((1]) to be a sufficient condition for higher

regularity. Their result can be stated as follows

Theorem 1.2 (Beale, Kato, Maida)
T

Assume f IV x vj . dt < -. Let s > 3, v 0 c HO. There exists a constant c
0 T L

depending on T, a, f IV x vI dt, mv0s , such that0 LO

(1.6) *v(t)H a c for t 4 T

In order to prove Theorem 1.1 let us consider the difference w u - v. Then w

will satisfy

awI - vAw + (v.V)w + (w.V)v + (wV)w vtv + Vr

(1.7) divw - 0
~w(0,.) - 0

We take the scalar product of (1.7) with w in Hm , m > 3 and use

(1.9) I (w'Vv))ml 4 c NVO+ I 2

m m1 m
for v c Hm+ 1', div v = 0, w c Hm + 1 div w = 0 (see [5]).

Using the fact that -v(Aw,w)m ) 0 we obtain

(1.10) d 11wR C viAv, + c Uv INwh + c 11w,12

dt if M in m+41 m m r

Let us multiply (1.10) by exp(-cm f lIV m+1ds) and consider the quantity

t 0

y - Wlm exp(-c m f NVI 154 ds). We obtain the inequality
a 4 vF(t) + Gy 20

(1.11) 
dt

y(o) = 0

with

t
(1.12) F(t) = lAvl m exp - cm f m+ids

0

and

T
(1.13) G Cm exp Cm r oVom+1dt

0

' j"-5-
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We shall make use now of an elementary lemma:

Leoma 1.3

Let T > 0, G > 0 be given constants and let F(t) be a nonnegative continuous

function on [0,T]. Let v0  be defined by

(1.14) v 0 - T1

8TG f F(t)dt
0

Then, for every 0 < V 4 v0 , every solution y P 0 of (1.11) is uniformly bounded on

(0,T] and

T
(1.15) y(t) 4 Min{j , 12v f F(t)dt .

0

Proof of lemma

Let us define I by

(1.16) M - Min{fI, 16V2G f (t)dt)2}
4T G 0

we divide (1.11) by (1 + y)2 dt vF + I. We integrate between 0 and t:' z ~~~~~~ Y)dvd 11)by( ): d 2
-- ~(1 + -y

1 T
(1.17) ) - LT - v f F(t)dt

1 + y(t)

The choice 1 4 - implies IT 4 and, for v 4 v0  one has
4T2G G

T T
v f F(t)dt < Indeed, if = 6v2G(f F(t)dt)2  the last inequality is an

0 'Z G 1 0
equality and if I = it follows from

4T2 G

/- 4 G .8 F(t)dt ) v f F(t)dt

Thus (1.17) becomes 4 which implies (1.15).

1 + y(t)

-6-
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We return to the proof of Theorem 1. 1.

we apply Lema 1.3 to (1.11) with F,G defined in (1.12), (1.13). We find v0
T

depending on T, m, f IVIm+2 dt such that, if 0 - v ( vo and as long as w(t) belongs
0

to Hm+
2
, t ( T, one has

(1.18) Iw(t)l m -C y'V

T
for some ym depending on T, m, IvIm+2 dt.

Using standard calculus inequalities one can find bounds of the type

T T
(1.19) Il(t)I 2 < Iv(t) m 2 + [Iv 01+ 2 + f If'mI 2dt]exp(cm f Iwim + Ivlm d)

0 0

Since the validity of (1.18) depends upon w(t) belonging to H b
+ 2  

but not upon the

size of Iw(t)I+ 2  one can argue by contradiction and infer that lw(t)I.+2  cannot

become infinite for t 4 T and that (1.18) is true for all t ( T. We omit further

details.

V.

-7-

% o

' .-..

"I.AA-.



2. Distorted Euler equations

In this section we prove breakdown of smooth solutions of a "serni-Lagrangian" version

of the Euler equations. we start by recalling the Euler equation in Rin or T

'p tui + ujajiui -aip. j,i - 1,...,n

(2.1) a iui - 0

u(O,*) - u0 (*)

(Hre~ a and summation convention is used.)

Differentiating (2.1) we obtain

at 3U + (u.V)U + U 2 _ P

(2.2) 1 r
1 (0.-=

where U is the n x n matrix U -(jipi - le....n. j = 1,...,n and P is the

Hessian of the pressure P -(a 2 j), i, j s ....n. The constraint TrU - 0uP

0(incompressibility) is maintained if TrP TrU 2. This means that p solves Ap TrU2

and therefore the matrix P can be expressed in terms of U:

(2.3) P = (-R iR (TrU 2) i,j 1,.,

where Riare the Riesz transforms defined by

(2.4) R 1 = (a-12a

Let us denote by R the operator acting on n x n matrix valued functions M Cm..),

i -1,..-,n, j - 1,...,n by

(2.5) (RI.)ij RiR k(kj

We identify scalar functions f with the matrices f.I where I is the n x n identity

matrix. The (differentiated) Euler equations can be written as

atu + (u.V)IJ + U 2 + R(TrU 2 ) =0

*(2.6) TrU = 0

U(01-) = O-

If one passes to Lagrangian coordinates in (2.6) that is, if one uses the change of

variables a$--~ x(t,a) for x(t,a) solving

0%
Xr-8-



{ dx = u(t,x)
(2.7)

x(Oa) = a

the Euler equations (2.6) become

a a V2 + R(t)(TrV
2 ) = 0

(2.8) TrV 0

V(0,.) - V 0

where V(t,a) = U(t,x(t,a)) is the pullback of U and R(t) is the pullback of R

through tt:

(2.9) R(t)M = (R(M.($trl)].Ot

More precisely if kij(x,y) is a kernel for RiR., a kernel for R(t)ij will be

., kt (a,8) = k. (xt,a),x(t,B)). (We used the well-known fact that determinant of Jacobian

of *t is one.) At t = 0 the operator R(t) coincides with the Riesz operators

-A.+  R(0) = Ri this because x(0,a) = a. The distorted Euler equations are obtained from the

1 genuine Euler equations (2.8) by freezing R(t) at t = 0:

N2 2( Ut + U + R(TrU2) 0

( U(0,.) = U0

Let us note that while (2.10) are valid approximations of (2.8) for a short time the blow

up arguments that we are going to give have no dizect bearing on the Euler equations.

The equations (2.10) are well-posed in a variety of spaces. For instance we can

consider the Sobolev spaces (Hs)n of matrices with entries in HS , s >-a. If s > -
2 2

HS are Banach algebras under pointwise multiplication; the operators Rj are bounded

in Hs  (for any s, of course). We conclude that, if U is a solution of (2.10)

d 2--~W ,u c IuI2
wt MS s CUs

and the local existence and uniqueness of solutions of (2.10) follow in standard manner.

We shall treat first the periodic case; we seek solutions to (2.10) which satisfy

U(x + Lei ) = U(x) for any ei - (0 ,...,1,..., 0 )t and some L > 0. We may assume L = 1

without loss of generality. Alternately, we shall refer to U as being defined on the

n dimensional torus Tn Rn/t n . Let us denote, for a point x in Tn by F(x) the

FT

K

0,. .,++''''' ... ''"',...+:,..:.+ +, ."-''-".'- .+." " - ." - ." -". - ' -- ".,-.+-,.-. ''' -.-. ., -,' . .,''.''+ %.. .. ''1
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i-th principal circle passing through x:

(2.11) ri(x) - fy C Tnjyj - xj mod 1, j - 1 .... n, j 0 i}l i - 1,...,n

Let us denote, for a matrix U, by S and J the symmetric an4 respectively

antisymmetric parts of U:
* U*

S -- U U where U is the transposed of U.
2 2

Theorem 2.1

Let U0 be a smooth n x n matrix valued function on Tn  satisfying

(i) TrU0 (x) = 0 for all x c Tn .

(ii) There exists x0 C Tn and i, 1 4 i < n such that

U0 -U 0

supp J r) r (x0) = 0 0 ) and0 i 02
f U0 iidxi < 0 (no summation).
r i (x 0 )

* Then the solution of (2.10) having U0 as initial data breaks down in finite time. More

precisely the symmetric part of the solution U(t,x) becomes infinite near Fi(x0 ) in

finite time.

* . Proof

Let us introduce first some notation. We denote for two matrices M, N by (MpN)

*the scalar product

(2.12) (M;N) - Tr MN*

For two matrix valued functions on Tn we denote by <M,N> the scalar product

(2.13) <M,N> = f (M(x};N(x))dx

Tn

Let us first remark that the operator R is symmetric:

*(2.14) <RM,N> <M,RN4>

Let us break (2.10) into its symmetric and antisymmetric parts:

(2.15) ats + S2 + J2 + R(TrU 2 ) = 0

(2.16) atJ + SJ + JS - 00

-10-
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We deduce from (2.16) that

(2.17) supp J~t,.) C SUPp JO

Indeed, we can prove (2.17) by noticing that, for any fixed x e T

d(J(t,x)jJ~t,x)) - Tr(83 2 + JSJ) - 2TrSJ 2 C2a(t,x)(3('c,X),3Ct,x))

where m(t~x) is the maximum of the absolute values of the eigenvalues of S(t,x). It

follows from Gronwall's inequality that. as long as S(t,x) is smooth, if .70Cx - 0,

K J(t,x) - 0. Let 9 be an n x n matrix valued smooth function satisfying the following

conditions:

Ca) supp 9 r) supp J7O

(b) for every x t Tn, O(x is a symmetric, nonnegative matrix, i.e. OWx - TWx2  for

som symmetric YVx).

Cc) R9 -0.

Cd) <SO*'> < 0.

Let us postpone for the moment the construction of 9 and proceed with the proof.

Taking the scalar product of (2.15) with 9 we obtain

(2.18) A.S. 0~ + (S 2 ,0 + (<72,90> + ok(Tru 2 ),O> - 0
dt

Now <R(TrU2),§> _ <TrU2,Rf> - 0 because of assumption (c) and of the symmetry (2.14)

of R. Moreover, combining (2.17) and assumption (a) we deduce <j29 0 0. Thus (2.18)

becomes

(2.19) <d O + (92 =o0-
* dt

Now

l(S,O)I =if Tr(S~x)9C~c))dxl 4 f ITr(S~x)Y(x)YCx))kdx
Tn T n

"4 4~~ f (TrCSx)t(x))(Sx)(x)) 1 2 (TrYx)(x))2dx 4

nn
T

10



It follows from (2.19) that

(2.20) d <S#+ sO> 2  <0A.. <S,0> + <5 0 •

dt T'r1(x)dx

Tn

We assumed in (d) that <SO,> < 0 and thus we infer that <S(t,-),#> must become

mlf Tr#xldx

for t not larger than T. - T<S0,0 •

p- We are going to show now how one can construct 0 satisfying properties (a)-(d).

Let us take a neighborhood V of x 0 such that for y e V, ri(y) n supp j0 o . Since

UOii(x) - S0ui(x) assumption (ii) implies f SOii(xO1,...,X,...,xOn)dX is

negative. We may assume that 
r 0)

f S0 i < 0 for all y V.
.i (y)

S Let 9(x) - f(x)2 with *(x) a smooth function defined in Tn, independent of the i-th

variable (that is, constant on circles ri(z) for any z c Tn) with support in

K = U ri(y) and identically 1 on a set K1 - U ri(y) for some x0 e V C C V. We
yCV yCV I

define O(x) to be the n x n matrix having all entries equal to zero with the exception

of the entry O(x)ii set to be equal to V(x). Clearly properties (a), (b) and (d) are

satisfied from construction. Condition (c) is satisfied for a matrix 9 if its columns

are divergence free. In the constructed matrix the only nonzero column is the i-th and

aiq(x) - 0. This completes the proof of Theorem 2.1.

-12-
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3. Solutions with spherical symmetry

In [4] C. Foias showed that the equation (2.10) in the whole space Rn admits

solutions of the form U(t,x) - B(tjlxl)(I - nw(x)) where I is the identity matrix

and w(x) is the projector on the direction x

(3.1) W(x) - ( i-- ) i,j = 1,...,n

Moreover he obtained a simple equation for the scalar quantity B which blows up. We

shall generalize slightly this result, allowing antisymmetric parts in U(t,x). The main

reason behind our desire to have nontrivial antisymmetric parts in U(t,x) is that they

correspond to the vorticity in the case of genuine Euler equations.

Let A be a rotation, A e 0(n). We denote for a scalar function in R, f, by

fA the composed

(3.2) fA(x) - f(Ax)

For a matrix valued function M we denote by MA the matrix with entries

(Mi - (Mi5)X. We define the operations TA and TA on n x n matrix valued

functions as

(3.3) TAM - A- MAA 

(3.4) NAM - (det A)A- IMAA

Finally, for a matrix valued function U we define LA(U) by

(3.5) LA(U) - TA(S) + A (J) where U - S + JI I

S (U + U), J - (U - U*). Let us denote by N(U) the operator giving the distorted
2 2

Euler equation in ln:

(3.6) N(U) - atU + U
2 + R(TrU

2)

Proposition 3.1.

For any A c 0(n), N is covariant with respect to LA:

(3.7) LA(N(U)) - N(LAU)

-13-
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Corollary 3.2.

If the initial data U0  is invariant with respect to A, i.e. if LANU0 ) - U0  then

the solution U(t,x) is invariant with respect to A,

(3.8) LA(U(t,.)) - U(t,.)

Proof of Proposition 3.1.

Let us take the symmetric and antisymmetric parts of N(U)

(3.9) N(U) + N(U) S + S
2 + J2 + R(TrU2)

2 t

(3.10) N(U) - N(U)
(3.1) 2 at+S+is

Applying TA to (3.10) we obtain

•N(U) +N(L AU) - (N(L AU))T( -N(U) ) = :t A + (TAS)(TAJ) + CT 3)(T s) = A A

A 2 tA A Aj A AS 2

In order to check the TA covariance of the symmetric part of N(U) we make use of the

* well-known covariance with respect to rotations of the Riesz transforms ([6])

(3.11) TA(Rf) = R(fA)

-' - for any scalar function f.

We check now that Tr( LAU)2 = (TrU2 )A' Indeed

Tr(LAU)2 = Tr((TAs + TAJ) 2 Tr((TAS)2 + (TAJ)2 ) = Tr(TA(S2) + TA(J2)) -

TrA-I(S 2 + J2 )AA Tr(S 2 + J2) A = (TrU2 )A

Applying TA to (3.9) we obtain

S* 
N(LAU) + (NCLAU))*

T (NW) + (U) (S (T S)
2 

+ J 2 + R(Tr(L U) 
2  A A

A) = t(TAS) A (TA A 2

.4,. This proves the proposition. Corollary (3.2) follows from uniqueness of solutions of

NIU) - 0.

* Let us restrict our attention for a moment to the case n - 3. Any antisymmetric

matrix J defines uniquely a vector w c R3 such that Jv = w x v for any v c R3 .

Here w x v is the vector (w2v3 - w3 v2 , w3v1 - wIv 3 , wiv 2 - w2vI
)t  and clearly w is

determined by w"I J 3 2 , w2 = J 1 3 , w3 = J21. The matrix J can be computed in terms of

. --14-
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the vector ws

(3.12) J2 _ _IWi2(z - T1)

where e , , -

We note here that if J(x) is the antisymetric part of the Jacobian of a function
1

u(x) i.e. J(x) (ju: L -
3iuj), i, - 1,2,3 then w(x) - (V x u)(x). If J(tx)

satisfies the antisymmetric part of (2.10) i.e. if

(3.13) at3 + 83 + .8 - 0

then forming the quantities w(twx) corresponding to J(t,x) we obtain from (3.13) the

equation

(3.14) t(- S

This in the analogue of the vorticity equation in the came of Euler equations.

Smarizing, the equation (2.10) is equivalent in the three-dimensional case to

(3.15) 
8s + *2 + J2 + R(Tr82 + TrJ 2) - 0

coupled with (3.14) where J2 is given by (3.12). We can consider the system (3.14),

(3.15) with J2 defined by (3.12) in any number of dimensions: S will be a n x n

symmetric matrix and w an n vector.

Proposition 3.2

Assume that the initial data for the system

(3.16) atw - S,

(3.17) ats + + 32 + R(Tr(S2 + 2)) - 0

where J2 _ -jwj2 (I - Iv,), w - , - 1 .... n are of the form

(3.19) S0(x) - 80(Ixl)(I - n(x)), ,(x) given in (3.1).

Then for as long as the solution S(tx), w(t,x) stays smooth, it has the form

(3.20) w(t,x) - (t,txl) x

,r, ;-,-15-
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(3.21) S(tx) - S(t.IxI)(I - nw(x))

where y, B are two scalar functions satisfying

(3.22) aB+ B 2 2  2_ - I3~ fr on- W 2  Y y2 )do - 0
r 0

(3.23) aty + (n - 1)yB - 0

(3.24) y(O,r) - Yo(r), 0(0,r) 0 0 (r)

(3.25) y(t.O) - y(t,in) - 0, 0(t,0) 0 (t,-) -0

Remark 1

The equation obtained by Foias is the particular case y(t,r) E0 arising from

YO = 0.

Remark 2

In n - 3 initial data of the form (3.18), (3.19) are those which satisfy

* LAUC - U0 , for all A e O(3, TrU0 . 0.

* 4 We start by computing Rf for a radial function.

Lemma 3.3

Let f - f(r) be a smooth function defined for r ;P 0 decaying sufficiently at

infinity (for instance f(Ixl) c Li () L in R'e). Then

(3.26) Rf - -[gI + kw]

when g and k are radial functions defined by

(3.27) g(r) .n nlfsd
r n0

r
(3.28) kMr) - f(r) - f Bn-1f(s)ds

r n0

Proof

Let us use the notation V' r - xj.Te
I dr 'Te

a2 f(r) VW 6 +(AJ)rirx. on the other hand
ij r 6i +(i ~ ) r wx)

-16-
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AMg(ri, + hlr)xix j ) - (Ag + 2h)6i j + (Ah +A),

Thus aijf(r) - A(g(r)djj + h(r)xjxj) if the system

(3.29) Ag + 2h= f- Cr)

r

(3.30) r(hh +- .h-) is solved
(3.30 + 4h = f(r))

Now (3.30) follows from (3.29) if
4h'

(Ag)' + 2h' - r(Ah +---) i.e. if (Ag)' - (rh')' + nh'

This follows if Ag = Crh)' +D n -1 ( rh). So (3.30) is a consequence of C3.29) if
r

g' = rh. With this choice for g we solve (3.29):

(rh)' + n "- rh + 2h
r r

This gives (ink) W - rn for k - r 2h. we obtain the formula (3.28) for k:

r

(3.31) k(r) - f(r) - . f sn-lf(s)ds
r n"

Then g k. In order to check (3.27) let us note that
r

(ng + k - f) - k + k' - V - 0
r

Thus, since all these functions vanish at infinity we obtain

(3.32) f - ng + k

Therefore (3.31) and (3.32) imply (3.27). We note that (3.32) follows also from the

familiar Ri Rif - -f (see (6]) by taking the trace in (3.26).

Proof of Proposition 3.2

We shall use the ansatz w(tx) y y(t,Jx) X , S(tx) - 8(t,jxj)(I - niy(x)) and

check that equations (3.16), (3.17) give consistent equations for 8, y. Equation (3.16)
becomes 3ty - 1 - n)By i.e. (3.23). Now S2 - 02(1 - nw)

2 
_ 02(I + (n

2 
- 2n)w)

because w2 . w. Also J2 . _Y2(I - w). Indeed .- ir(x) because x and w defineK'w

the same direction. In order to proceed we put f(r) - Tr(S 2 + J2) and compute

(3.33) Tr(S 2 + J2- f(r) - (n -1n - Y2 ]

According to Lemma 3.3 it follows that

i'
'  

-17-
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(3.34) R(Tr(S
2 + J2)) = -(gI + kv)

with g,k defined by (3.27), (3.28) and f by (3.33). At this point equation (3.17)

has the form

(3.35) 0 t 0)(I - nir) + (82 - y2 _ g)I + ((n 
2 

- 2n)B
2 

+ y 2 k)w = 0

The only way in which (3.35) can possibly give a consistent equation for B is if it

factors out (I - nw), that is if

(3.36) (n
2 

_ 2n)0
2 

+ y2 - k - -n(8
2 

- y2 _ g)

But (3.36) is equivalent to

(n - 1)(nB - y ) = ng + k

which in view of (3.33) is nothing but (3.32) in disguise. Therefore the equation (3.35)

becomes

(3.37) (at
8 

+ 82 _ Y2 - g)(I - nr) - 0

which is satisfied if B solves (3.22) because (3.27) and (3.33) imply
r

g(r) = n 1 f an-I (n82 _ y 2)ds.n
r 0

We present now the blow-up argument.

Theorem 3.4

Let us assume that beside the conditions (3.18) and (3.19) of Proposition 3.2 being

fulfilled, the initial data for the system (3.16), (3.17) satisfy also

(3.38) Y0 (r) = 0 for 0 4 r 4 R, for some R, > 0

(3.39) 80 (r) = 0 for 0 4 r ( R for some 0 4 R ( R,

(3.40) f 00 (r)rn-
1 dr < 0 for some I < a, (a near 1)

R

Then the solution to the distorted Euler equations (3.16), (3.17) having

WOW(x) = Yo(Xl) T , SO(X) = B0(lx)(l - nn(x)) for initial data breakdown in finite

time. More precisely S breaks down near Ixi = R.

*-' -18-
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Proof

As proven in Proposition (3.2) the solutions are w(tx) = y(t, lxi) T'
S(tox) - B(toIxI)(I - nw) with y,w satisfying (3.22)-(3.25). Since (3.23) can be

integrated

t

(3.41) y(t,r) - yo(r)exp f (1 - n)l(s,r)ds
0

it follows from (3.38) that

(3.42) y(t,r) = 0 for 0 ( r R1 •

Therefore, for 0 4 r ( R1  equation (3.22) becomes

r
(3-43) a +02 -n-nfs-n2sd

Now we claim that from (3.43) it follows that property (3.39) is preserved by B(t,r),

t > 0, as long as both B and y are smooth. Indeed multiplying (3.43) by B(t,r)rn-
1

Vand integrating between 0 and R one obtains

I R n R R R

2 2(t,r)rtdrr+-dr - (n - 1)n f 02(t,p)pn - f1  f r orT_ f n-1 f o3trr- oor

0 0 0 p r

I id B2(t,r)rn-ldr .f -2(t,r)rn-1[n(n - 1) r 0(t'o) do - B(t,r]dr
T Ft 0 0

-. Thus

Bd f R2(t,r)rn-dr 4 2 Max (n(n - 1) f B(tIs) da - B(t,p)) f B2 (t,r)rn-ldr
dt 0 pcO ,R]

•.4. and therefore, as long as B is smooth

- -R R 2t-iR

2(t,r)rn-
1 dr R f 2 (r)r n-dr exp 2 f Max (n(n - 1) R B(r's) ds - B(t,p))dT

0 0 0 oe(0,R] P

-19-
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and by (3.39) it follows

R
(3.44) f B2 (t,r)rn-ldr = 0, t > 0

0
'I

Let us take now a > I such that (3.40) is valid and a small enough such that

OR < R,, n(n - 1)log a < 1. Integrating in (3.43) between R and OR we obtain

d oR oR

(3.45) f 0(t,r)rn 1 dr + (1 - n(n - 1)log a) f 02(tBsln-ldB 4

R R

R
< n(n - 1)log a f 02 (t,s)sn-lds = 0

0

Now

OR OR

f 8
2 (t,s)sn-I n 1 (f 0(t,s)sn-lda)

2

R R~ n n R

It follows that
OR OR

(3.46) f OR B(t,r)r n-dr + n(- n(n I)loq a) (f R(t,s)sn-lds)2
dt R RnC-n -1) R

and since

OR
f B0 (r)rn-ldr < 0
R

OR
we conclude that f B(t,r)rn-ldr becomes -m for t not larger than

R

T= Rn(a n - 1) 1
n(1 - n(n - 1)log a) OR

If o(r)r 'dri

-20-
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SOne can easily obtain a blow-up argument for equations (3.22), (3.23) at the origin

if one drops the requirement that B(O) - 0. However, this would lead to functions

S(t,x) which are not defined at x - 0.

.- 21
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